ψ_2 (3823)

$$I^G(J^{PC}) = 0^-(2^{--})$$

I, J, P need confirmation.

was $\psi(3823)$, X(3823)

Seen by BHARDWAJ 13 in $B o \ \chi_{c1} \, \gamma \, K$ and ABLIKIM 15S in $e^+e^-
ightarrow \ \pi^+\pi^-\gamma\chi_{c1}$ decays as a narrow peak in the invariant mass distribution of the $\chi_{c1}\gamma$ system. Properties consistent with the $\psi_2(1^3D_2)$ $c\overline{c}$ state.

ψ_2 (3823) MASS

VALUE (MeV) EVTS	DOCUMENT ID	TECN	COMMENT
3823.7 \pm 0.5 OUR AVERAGE			
$3824.08 \pm 0.53 \pm 0.14$ 137			$B^+ \rightarrow J/\psi \pi^+ \pi^- K^+$
$3821.7 \pm 1.3 \pm 0.7 19 \pm 5$	² ABLIKIM 159	BES3	$e^+e^- \rightarrow \pi^+\pi^-\chi_{c1}\gamma$
$3823.1 \pm 1.8 \pm 0.7 33 \pm 10$	³ BHARDWAJ 13	BELL	$B^{\pm} \rightarrow \chi_{c1} \gamma K^{\pm}$

 $^{^{1}}$ Using the measured $m_{\psi_{2}(3823)} - m_{\psi(2S)} = 137.98 \pm 0.53 \pm 0.14$ MeV.

$m_{\psi_2(3823)} - m_{\psi(25)}$

VALUE (MeV) DOCUMENT ID TECN COMMENT <u>EVTS</u>

• • We do not use the following data for averages, fits, limits, etc.

¹ AAIJ 20s LHCB $B^+ \rightarrow J/\psi \pi^+ \pi^- K^+$ $137.98 \pm 0.53 \pm 0.14$ ¹ AAIJ 20s also reports $m_{\chi_{c1}(3872)} - m_{\psi_2(3823)} = 47.50 \pm 0.53 \pm 0.13$ MeV.

$\psi_{2}(3823)$ WIDTH

VALUE (MeV)	CL%	DOCUMENT ID		TECN	COMMENT
< 5.2	90	AAIJ	20 S	LHCB	$B^+ \rightarrow J/\psi \pi^+ \pi^- K^+$
and Manda mak was the fallowing data for average fits limited at a con-					

We do not use the following data for averages, fits, limits, etc.

<16 90
2
 ABLIKIM 15S BES3 $e^+e^- \rightarrow \pi^+\pi^-\chi_{c1}\gamma_{c24}$ 90 3 BHARDWAJ 13 BELL $B^\pm \rightarrow \chi_{c1}\gamma_{c1}\gamma_{c2}$

² From a simultaneous unbinned maximum likelihood fit of $e^+e^-
ightarrow ~\pi^+\pi^-\chi_{c1}\gamma$ data (the $\pi^+\pi^-$ recoil mass) taken at \sqrt{s} values of 4.23, 4.26, 4.36, 4.42, and 4.60 GeV to simulated events including both $\psi(2S) \to \chi_{c1} \gamma$ and $\psi_2(3823) \to \chi_{c1} \gamma$ together, with floating mass scale offset for $\psi(2S)$, floating $\psi_2(3823)$ mass, and zero $\psi_2(3823)$ width, resulting in a significance of 5.9 σ when including systematic uncertainties.

3 From a simultaneous fit to $B^\pm \to (\chi_{c1} \gamma) K^\pm$ and $B^0 \to (\chi_{c1} \gamma) K^0_S$ with significance 4.0 σ including systematics. Corrected for the measured $\psi(2S)$ mass using $B \to \psi(2S) K_S \to (\chi_{c1} \gamma) K_S \to (\chi_{c2} \gamma) K_$

 $[\]psi(2S)K \rightarrow (\gamma \chi_{c1})K$ decays.

 $^{^1}$ AAIJ 20S also provides a limit of < 6.6 MeV with 95% CL.

² From a fit of $e^+e^- \to \pi^+\pi^-\chi_{c1}\gamma$ data (the $\pi^+\pi^-$ recoil mass) taken at \sqrt{s} values of 4.23, 4.26, 4.36, 4.42, and 4.60 GeV to a Breit-Wigner function with the mass fixed from the likelihood fit above, Gaussian resolution smearing, and floating width. ³ From a simultaneous fit to $B^\pm \to (\chi_{c1}\gamma) K^\pm$ and $B^0 \to (\chi_{c1}\gamma) K^0_S$ with significance

 $^{4.0\}sigma$ including systematics.

ψ_2 (3823) DECAY MODES

Branching fractions are given relative to the one **DEFINED AS 1**.

	Mode	Fraction (Γ_i/Γ)	Confidence level			
$\overline{\Gamma_1}$	$J/\psi(1S)\pi^+\pi^-$	< 0.06	90%			
Γ_2	$J/\psi(1S)\pi^{0}\pi^{0}$	< 0.11	90%			
Γ_3	$J/\psi(1S)\pi^0$	< 0.030	90%			
Γ_4	$J/\psi(1\mathcal{S})\eta$	< 0.14	90%			
Γ_5	$\chi_{c0}\gamma$	< 0.24	90%			
Γ_6	$\chi_{c1}\gamma$	DEFINED AS 1				
Γ ₇	$\chi_{c2}\gamma$	$0.28 \begin{array}{l} +0.14 \\ -0.11 \end{array}$				

ψ_2 (3823) BRANCHING RATIOS

 $\Gamma igl(J/\psi(1S) \pi^+ \pi^- igr)/\Gamma_{ ext{total}}$

 Γ_1/Γ

• • • We do not use the following data for averages, fits, limits, etc. • • •

DOCUMENT ID TECN COMMENT

$$\Gamma(J/\psi(1S)\pi^+\pi^-)/\Gamma(\chi_{c1}\gamma)$$
 $VALUE$
 $CL\%$
 T_1/Γ_6
 T_1/Γ_6

$$\Gamma(J/\psi(1S)\pi^0\pi^0)/\Gamma(\chi_{c1}\gamma)$$

VALUE

C1%
90

1 ABLIKIM
210

ECN
COMMENT
 $e^+e^- \rightarrow \pi^+\pi^- X$

$$\Gamma(J/\psi(1S)\eta)/\Gamma(\chi_{c1}\gamma)$$

VALUE

C1.4

90

C1.6

DOCUMENT ID

TECN
COMMENT

COMMENT

1 ABLIKIM
210 BES3 $e^+e^- \rightarrow \pi^+\pi^- X$

¹ From a simultaneous unbinned maximum likelihood fit of the $\pi^+\pi^-$ recoil mass distributions of seven decay channels in the process $e^+e^-\to\pi^+\pi^-X$.

¹ From a simultaneous unbinned maximum likelihood fit of the $\pi^+\pi^-$ recoil mass distributions of seven decay channels in the process $e^+e^-\to\pi^+\pi^-X$.

¹ From a simultaneous unbinned maximum likelihood fit of the $\pi^+\pi^-$ recoil mass distributions of seven decay channels in the process $e^+e^-\to\pi^+\pi^-X$.

¹ From a simultaneous unbinned maximum likelihood fit of the $\pi^+\pi^-$ recoil mass distributions of seven decay channels in the process $e^+e^-\to\pi^+\pi^-X$.

¹ From a simultaneous unbinned maximum likelihood fit of the $\pi^+\pi^-$ recoil mass distributions of seven decay channels in the process $e^+e^- \to \pi^+\pi^- X$.

 $\Gamma(\chi_{c0}\gamma)/\Gamma_{total}$ Γ_5/Γ DOCUMENT ID TECN__COMMENT • We do not use the following data for averages, fits, limits, etc. • • ¹ ABLIKIM 210 BES3 $e^+e^- \to \pi^+\pi^- X$ not seen ¹ From a simultaneous unbinned maximum likelihood fit of the $\pi^+\pi^-$ recoil mass distributions of seven decay channels in the process $e^+e^- \rightarrow \pi^+\pi^- X$. $\Gamma(\chi_{c1}\gamma)/\Gamma_{total}$ Γ_6/Γ <u>V</u>ALUE **EVTS** ¹ BHARDWAJ 33 + 10• We do not use the following data for averages, fits, limits, etc. 210 BES3 $e^+e^- \to \pi^+\pi^- X$ 210 BES3 $e^+e^- \to \pi^0\pi^0 X$ ² ABLIKIM seen ³ ABLIKIM 16 ± 5 seen ¹ BHARDWAJ 13 reports B($B^{\pm} \to \psi_2(3823) K^{\pm}$) × B($\psi_2(3823) \to \gamma \chi_{c1}$) = (9.7 ± 2.8 ± 1.1) \times 10^{-6} with statistical significance 3.8 σ . ² From a simultaneous unbinned maximum likelihood fit of the $\pi^+\pi^-$ recoil mass distributions of seven decay channels in the process $e^+e^- \to \pi^+\pi^- X$. Signal has a 11.8 ³ From a fit of the invariant $\pi^0 \pi^0$ recoil-mass distribution. Signal has a 4.3 σ significance. $\Gamma(\chi_{c0}\gamma)/\Gamma(\chi_{c1}\gamma)$ **VALUE** 210 BES3 $e^+e^- \to \pi^+\pi^- X$ <0.24 ¹ From a simultaneous unbinned maximum likelihood fit of the $\pi^+\pi^-$ recoil mass distributions of seven decay channels in the process $e^+e^-\to\pi^+\pi^-X$. $\Gamma(\chi_{c2}\gamma)/\Gamma_{\text{total}}$ Γ_7/Γ DOCUMENT ID TECN COMMENT • • We do not use the following data for averages, fits, limits, etc. 210 BES3 $e^+e^- \rightarrow \pi^+\pi^- X$ ¹ ABLIKIM ² ABLIKIM 15s BES3 $e^+e^- \rightarrow \pi^+\pi^-\chi_{c2}\gamma$ ³ BHARDWAJ 13 BELL $B^\pm \rightarrow \chi_{c2}\gamma K^\pm$ not seen not seen ¹ From a simultaneous unbinned maximum likelihood fit of the $\pi^+\pi^-$ recoil mass distributions of seven decay channels in the process $e^+e^-\to\pi^+\pi^-X$. Signal has a 3.2 σ ² From a simultaneous unbinned maximum likelihood fit of $e^+e^-
ightarrow ~\pi^+\pi^-\chi_{c2}\gamma$ data (the $\pi^+\pi^-$ recoil mass) taken at \sqrt{s} values of 4.23, 4.26, 4.36, 4.42, and 4.60 GeV to simulated events including both $\psi(2S) \to \chi_{c2} \gamma$ and $\psi_2(3823) \to \chi_{c2} \gamma$ together, with floating mass scale offset for $\psi(2S)$, $\psi_2(3823)$ mass floating (fixed to that above), and zero $\psi_2(3823)$ width. ³BHARDWAJ 13 reports B($B^{\pm} \rightarrow \psi_2(3823)K^{\pm}$) \times B($\psi_2(3823) \rightarrow \gamma \chi_{c2}$) $< 3.6 \times$ 10^{-6} at 90% CL. $\Gamma(\chi_{c2}\gamma)/\Gamma(\chi_{c1}\gamma)$ Γ_7/Γ_6 DOCUMENT ID TECN COMMENT 210 BES3 $e^+e^-_{\pi^+\pi^-} \chi_{c2} \gamma$ ¹ ABLIKIM

• • • We do not use the following data for averages, fits, limits, etc. • •

< 0.42	90	² ABLIKIM	15 S	BES3	$e^+e^ \rightarrow$
< 0.41	90	BHARDWAJ	13	BELL	$B^{\pm} ightarrow$
					$\chi_{c1/c2} \gamma K^{\pm}$

 $^{^1}$ From a simultaneous unbinned maximum likelihood fit of the $\pi^+\pi^-$ recoil mass distributions of seven decay channels in the process $e^+e^-\to\pi^+\pi^-X$. 2 From a simultaneous unbinned maximum likelihood fit of $e^+e^-\to\pi^+\pi^-\chi_{c1(2)}\gamma$

ψ_2 (3823) REFERENCES

ABLIKIM	210	PR D103 L091102	M. Ablikim et al.	(BESIII Collab.)
AAIJ	20S	JHEP 2008 123	R. Aaij <i>et al.</i>	(LHCb Collab.)
ABLIKIM	15S	PRL 115 011803	M. Ablikim et al.	(BESIII Collab.)
BHARDWAJ	13	PRL 111 032001	V. Bhardwaj <i>et al.</i>	(BELLE Collab.)

² From a simultaneous unbinned maximum likelihood fit of $e^+e^- \rightarrow \pi^+\pi^-\chi_{c1(2)}\gamma$ data (the $\pi^+\pi^-$ recoil mass) taken at \sqrt{s} values of 4.23, 4.26, 4.36, 4.42, and 4.60 GeV to simulated events including both $\psi(2S) \rightarrow \chi_{c1(2)}\gamma$ and $\psi_2(3823) \rightarrow \chi_{c1(2)}\gamma$ together, with floating mass scale offset for $\psi(2S)$, $\psi_2(3823)$ mass floating (fixed to that above), and zero $\psi_2(3823)$ width.